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«““It Is not clear what we mean when we say
Painlevé equations are integrable”

——Dinner conversation with a colleague.
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e Information-theoretic quantities in singer and



e The mathematical problem is the computa-
tion of the Hankel determinant generated by
a deformation of classical weights:

e W(X) = x% e X (x + t)A,

Osx<oo, >0, t=>0,

deformed Laguerre, single-user

— 01 (]2'%|+tlx—l
e W(x) =x"1(1—x)"2 7= ,

X [(D,1), ag >0, a» >0, t>0,
deformed Jacobi, multi-users

e Main results. Ladder operators approach to
orthogonal polynomials shows that the Han-
kel determinants in the single user case a par-
ticular Painleve V, and in the multi-users case
a particular Painleve VI.



e Multiple-input multiple-output (MIMQO) sys-
tems have been at the forefront of wireless
communications research and development,
e.g., hext-generation wireless local area net-
works (WLAN) and cellular mobile networks.
The main reason for this explosion of interest
IS mainly due to the independent discoveries
of Telatar (1990, 1999, 2008, 7157) and Fos-
chini (1990), demonstrated that the funda-
mental information-theoretic capacity of MIMO
systems grows linearly with the number of an-
tennas.

e Traditional methods give logarithmic capac-
Ity increase (in P). MIMO is a key technology
for meeting the ever-increasing demands for
higher-rate data-oriented wireless communi-
cations applications and services.



eErgodic Capacity, specifies the maximum achiev-
able average mutual information between the
transmitter and receiver, assumes that a user’s
codeword span a large number of ““indepen-
dent channels”. Mathematically the expecta-
tion value of a certain random variable.

e Outage Capacity. Characterizing the com-
munication limits of systems which are not



Methods for studying the outage capacity,
which boils down to the Hankel determinant

Dn = det lﬁ:+- I.;.Ll
J i,j=o0
generated from the moments of a certain weight
function w(x),

-

Mg = xKw(x)dx , k
a



e Two di Lerknt methods from random matrix
theory to compute Hankel determinants.

1. Exact expressions employing orthogonal
polynomials and ladder operators
(Belmehdi,Bonan,Clark,Lubinsky,Magnus...)
Logarithmic derivative of Hankel determinants
are the g—function of certain Py (Single User)
and Py (Multi User).

2. Large n approximations for these determi-
nants by employing the general linear statis-
tics theorems.

(Essentially Szeg0o limit theorem.)
eClosed-form expressions for the distribution
function. Valid for large dimension; approxi-
mations are remarkably accurate for even very
small matrix dimensions (2 x 2).



e Comparison of large n with Painleve

Single-user MIMO (deformed Laguerre )

Nr = nt,or a = 0. Coulomb fluid gives the
distribution of the mutual information, a Gaus-
sian, to leading order in n.

e Use Py to compute the large-n correction
terms for the mean, variance, and third cu-
mulant.

e Deviations from Gaussian as P (SNR) in-

creases. Sensitivities of mean, variance, and
third moment, with respect to P.
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*MIMO communication system has n{ trans-
mit and ny receive antennas.

e linear model:

Transmitted vector Xp, =1 CCIt

Received vector y, x1 CTT,

y =HX-+n.

* Np,x1 CCI'T is a complex Gaussian vector
« E(n) =0, E(nn") = Qn.

e Covariance matrix account for receiver noise
and multi-user interference; choice of Qnp dis-
tinguish between single-user and multi-user
MIMO models.

e H [C@"r=Nt channel matrix, is stochastic,
known to the receiver not to the transmitter.
e« H complex Gaussian, i.i.d. elements, zero
mean and unit variance.(Simplest choice).

e X subject to a power constraint:

E(xTx) =P.
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eShannon capacity gives highest data rate
achievable with negligible errors by any trans-
mission scheme.

Mutual Information between the input and
output signals,

I(X;y[H) = H([H) —H(yIx,H)
= H(y[H) —H(M)

e H(y|H) conditional entropy of y, defined by
Its density p(y|H):
1

H(y|H) = E(—logp) := — oo p(yIH) logp(y|H)dy.

e Ergodic capacity (C) relevant for highly
dynamic channels; high-mobility wireless ap-
plications; H varies quickly over time, each
transmission codeword sees a large number
of ““independent” channel realizations.
C = maxEy (1(X;y|H))

pP(X)
where the maximum is taken over all densi-
ties p(x) of the input vector X, subject to the
power constraint.
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e Telatar proved that the optimal input den-
sity pHX) is multi-variate complex Gaussian

with zero mean.
] ]

1(x;y|H) = logdet In, + HQHTQR?
where Q = E(XXT) IS the input signal covari-
ance.
e Capacity
C = maxEnx (X y|H
max Epy (106 YIH))
subject to tr(Q) =P.
e For this model,
P
QL —In, .
Nt
In other words, the capacity is achieved by
sending independent Gaussian signals from
each of the transmit antennas with equal power.



e OQOutage probability Poyt

Pout(Cout) = Pr q—l—_@f; Y) ﬁut) 1 ]

P
Pr logdet |nr+n—HHTQ;1 < Cout
t

with Q™~denoting the input covariance which maxi-
mizes the mutual information. The outage probability
can be calculated via

p 1 — e 19Cou

Pout(Cout) = on M((iw) ” dw ,

where M(:) the moment generating function of the
mutual information

P
= Ey det Inr+n—HHTQ;1 ,
t

and | ;= —1.
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® Single-User MIMO and the Deformed Laguerre Weight
e \Without loss of generality

nzlnr.

Due to the normalization of the trace of Qp, the trans-
mit power P also represents the SNR.
* Moment generating function,

L Lo

1
M(\) = Ey det Inr+¥HHT L ti=— .

Let
m = max{ns, N}, n:=min{n;, N}, aA:=mMm—n

and define
1
HH', n, <ng

W= H'H, nr=n¢°

e W is a complex Wishart random matrix with positive
eigenvalues denoted by {Xi}.; with j.p.d.f.

r 1 L 1 ,
P(X1, X2, ..., Xn) L1 Wi ag(Xi) (Xj — Xk)“,
=1 l<j<k=n

where wi 5g(X) = x%e™* is the classical Laguerre weight.

- MGF
L1 . @ |:| Ifl
X
MA) = E det I,+-W =E 1+Tk
k=1
- C 101 G
R H(XI_XJ)Z k=1 L+ 3T Wiag(Xk)dXk

| l_n_l
g i<j KT X)2 =g Wiag (Xi) dXk
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* Andreief-Heine identity:

Dnlw]

det(Mi+;
1

n—1
i,j=0






e Facts about OP: Recurrence relations.
ZPn(Z) = Pn+1(2) -+ an Pn(Z) -+ Bn Pn—l(Z).

PQ(Z) =1, BOP—l(Z) = 0.
e p1(n) plays an important role in later developments.
Lemma 1 Suppose v = —logw has a derivative in
some Lipshitz class with positive exponent. The low-
ering and raising operators satisfy the following:

PnE(Z) = —Bn(2)Pn(z) + Bn An(z)Pn-1(2)
PLi(@) = [Bn(2) + V{2)IPn-1(z) — An-1(2)Pn(2),
where
Oy
An@) = VD(Z;_;D(” PZIW(Y)dy
n aljbl 2
Ba@) = = YOV e weydy.

hn—1 4 zZ—Yy

Lemma 2 The functions An(z) and Bn(z) satisfy the
conditions:

Bn+1(2) + Bn(2) = (z — 0n)An(z) —V(z) (S1)

1+ (Z—an)[Bn+1(2) —Bn(2)] = Bn+1An+1—BnAn-1(2)
(S2).
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llfl_rt.ma 3 The functions An(2), Bn(z), and the sum
i=oAj(2), satisfy the conditions:

2 e _
Bn(Z)+VQZ)Bn(Z)+ Aj(2) = BnAn(z) An-1(2). (82[5
J=0

e |f vi{z) rational then

Vi(z) —vi{y) _ «a
z—y zy




e Derivation: A Quick Sketch

1 — Rn(t) N Rn(t)

A =
n(2) y4 z+t
Bn(z) = 12D, (O
Qz z+t
A P 2
hn q:l) y + t
A Pn(Y)Pn-1(y)
t) = , Ddy.
rn(t) 1 o v+ w(y, Ddy
e Sub. into compatibility conditions,
Oh =2n+ 1+ o+ A —tRy ()
1 = r2—A\r =
Bn = —R. (2n + a + A)rp + - R T+ n(n+a)
(B)
2} BN |
t Rj = n(nh+a—+ A) + pi(n,t) (sum)

i=0
e DiLerknce equations in n

r+1+FMmM=A—Rp@+2n+1+a+A—tR,) (dy)

ri —Arn = BaRnRn-1 (d2)
with “initial conditions™ ro(t) = 0, Ro(t) = given.
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e t— or Toda evolution
e A pair of Riccatti Equations

2rn = tRJ+A—Rp(t+2n+a+ A—tRp)
D = r2—Arn
Rn N ]
— " (2n+a+ Ay + 0 M o +a) .
1_Rn n
* Rh=vy/(y — 1).
1
yo = YTl e ¥, 0D I%Jy—}\—z
2y(y — 1) t t2 2 2y
@n+1+a+A)y yy—+1)
t 2(y — 1)’
eUsing the sum,
d A} ES
Hy := talog Dh=1t Rj = n(n+a-+ A) +pi(n,t).
j=0

*Representation of Rpy —



e Large n Coulomb Fluid Method

® |large n, the ratio approximated by
Dn(A)



e Gaussian distribution with mean and vari-
ance given by

Hcoul. = —S2(T)—nlogT
0oul. = —S1(T)
e Outage probability
T
P (Cot) == 1+erf —Qut—H
out(Cout) 5 o2
—1 —1

a=2+B—2 1+PB, b=2+B+2 1+p

® |In general
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* Beyond the Coulomb Fluid Approximation

Hn



eSummation of the series in P. (t=n/P =: nT)
ook at g1 in detail:

(91)° — 4n°g7'— 2(t + 2n)g1g7 + (t° + 4nt)(g1)° — t°(g)* =0

T2
(91)% — 4ngT— 2(T + 2)g1gT’+ (T2 +4T)(gD)? - (@ ¢ =

Yi(™)

N
YE—4AYo— 2(T + 2)YoYg+ (T2 +4T)(Yp)2 =0, (I

g1 = nYo(T) +

2YoY1 —2(2 + T)Y1Yg— 4Y{—2(2 + T)YoY
+ 2T(A+T)Y ¥ —=T2v;’=0, (OO

e Solutions,

1
+T — 4 +
YO(T):_4 T— T¢+T)
A+T+ T@A+T)

Yi(T) = —v/= 1 =1~
T(@A+T)2 32 T

e Note from Coulomb Fluid

Yo(T) = —TdiT(SZ/n —1InT),

satisfies (*) and when sub. into (**) it becomes a
linear equation in Yj.

25



Similarly
Z1(T)
n2

g2 = Zo(T) + + ...

where

Zo(T) = —Ti



e Summary
Cumulants
Note Ucoulomb 1S LINEAR in n

3

d
Cumulants k; = —1I! 0 g,(n/y)—y
1 I__II 1
K1 = P-Coulomb"‘ Hcorr. + O
_ 2 1 2
K2 = OCoulomb ¥ 5 2 OCorr. + O
L
Ky = 1K + ! —Kzg + O I__II
3 N 3,A™T 3K3B 5
e Analysis at large P. Large deviation(?)
Vs
W [anlogP +b——, P = o(n?)

P
o° [dlogP +bﬁ, P =0O(n?)

|:aL+b—, P = O(n)

See slides
End
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* A selection of Integrals: Schwinger (1918-1994)

o] I od] od]

o o |

4 pax

0 a—+ bx

log(a +b) =log a +

L/ v__ L1

/]log(x+t) dx = 27 log t+a+ t+b
(b—x)(x—a) 2
__ log(x+t)
(b_X)(X_a)(X+t) ] ]
-/ 2T | /1 4 A

" (t+a)(t+b) 09 >¥f+a ™ 2 %

vV V [
1090+ gy — g (L ab+ grayth) )it
(b—x) (x—a) x ab ( a+ h)?

'\'/ |Og(X+t) dX
(b—x)(x—a)(x—1)




