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Weyl law
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Exploit gm-cl correspondence?

round-trip operator F, dim F=M= 1/h; opening operator P=(MxN)
Inject a particle




t — E: Stroboscopic scattering theory

round-trip operator

e S, 5 . - S, Inject a particle:
exit: PTFP
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illustration: standard map/kicked rotator
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Classically chaotic systems (with J Tworzydto):

fractal Weyl law
Goal: reinstate phase space rules

I\Hixed phase space (with M Kopp):

.. fractal Weyl law ...
Goal: test character of chaotic component

Refractive escape (with M Kopp; J Wiersig; J Keating & M Novaes):
guantum dots with tunneling
dielectric resonators with

refractive escape
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Classically chaotic systemdg

Resonance distribution
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Power law scaling

Fractal Weyl law




A. identify short-




B. Cure degeneracy
QFQ\Y 0 (g, 0):consider QFQ\{ Y og\I'Y \V W

f 2"d preimage, projector :)ZZPZPZT

f 3 preimage, projector P,=P.P.T

f tth preimage, projector P=P,P,T
e semiclassical propagation:
(QFQ)P. o0, PP. 0 (tzs)
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D. Remaining states (long living): |Me "' dwell \/ M dwell




What have we done? A semiclassical partial Schur decomposition!
P, : part of orthogonal basis U in QFQ=UTU*
where T Is triangular with evals on diagonal.

Test: Hu5|m| rep of Schur vectors(|)\ |<O 1, M= 1280)

Husimi-Schur representation:
a new phase space representation for resonance eigenfunctions






Mixed phase space

Position of leads is important; coupled islands: fast decay
Uncoupled islands: slow tunneling escape



Two accumulation regions:

uncoupled islands
(long-living states):
just the ordinary Weyl law...

Idea: fix both upper and
lower cut-off of lifetimes
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Slightly unexpected...

Time domain studies: classical part of mixed phase space
IS quite unlike a fully chaotic phase space:

Power law decay Instead of
exponential decay

Origin: sticking to islands
(see eg Cristadoro/Ketzmerick PRL 08)



Possible explanation

Areas also shrink algebraically:
algebraic loss of gm-classical correspondence

power-law Ehrenfesttime

Weyllaw from combination of two power laws:



nonballistic escape I: tunnel barriers

e.g.. quantum dot with barrier at lead
Scattering operator:

S(H R T'e” FR FT

Some gme-cl correspondence remains




Short-living resonances:
life times strongly affected

P20, W=t
e T we ] B L
; :Hiﬁl'-_l--\- » < T EE ke B




Apparent fractal Weyl law only at
small reflection probablity

r’=0.0001




Scaling: cut-off dependent fractal
Weyl law even at larger r
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Smallest eigenvalue
r=0.0001

- iIndependent of k and M:
| 0.9 ’ Universal scaling (like sqrt)



nonballistic escape Il
dielectric resonators

Stroboscopic scattering operator

S(<2) R Te'? FR FT

with
frequency w,
traversal timet=nmnA /v C (Sabine’s law),
R, T determined by Fresnel reflection coefficients.
(n: refractive index; A: area, C: perimeter, v: velocity)
M=N=dim S= w C/v it (Weyl’s law applied to the boundary)




Compare realistic resonator to random matrix theory (RMT)

Bands of short-living states (origin: bouncing ball motion)
Requires to renormalize M and t! Here done independent from fluctuations
by using mean level spacing and decay rate of long-living states.
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