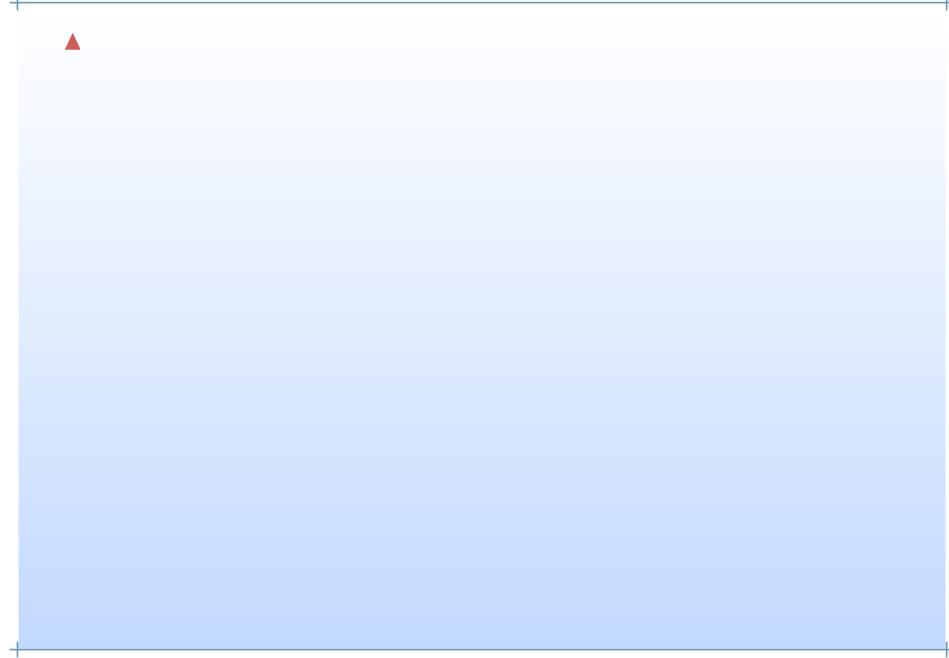
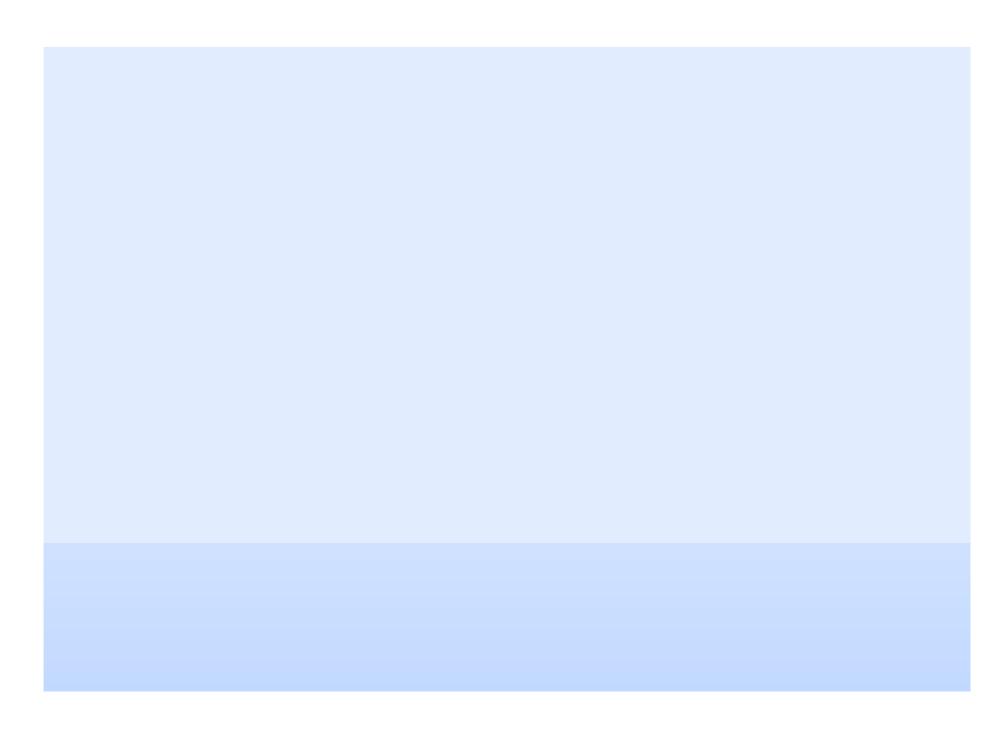
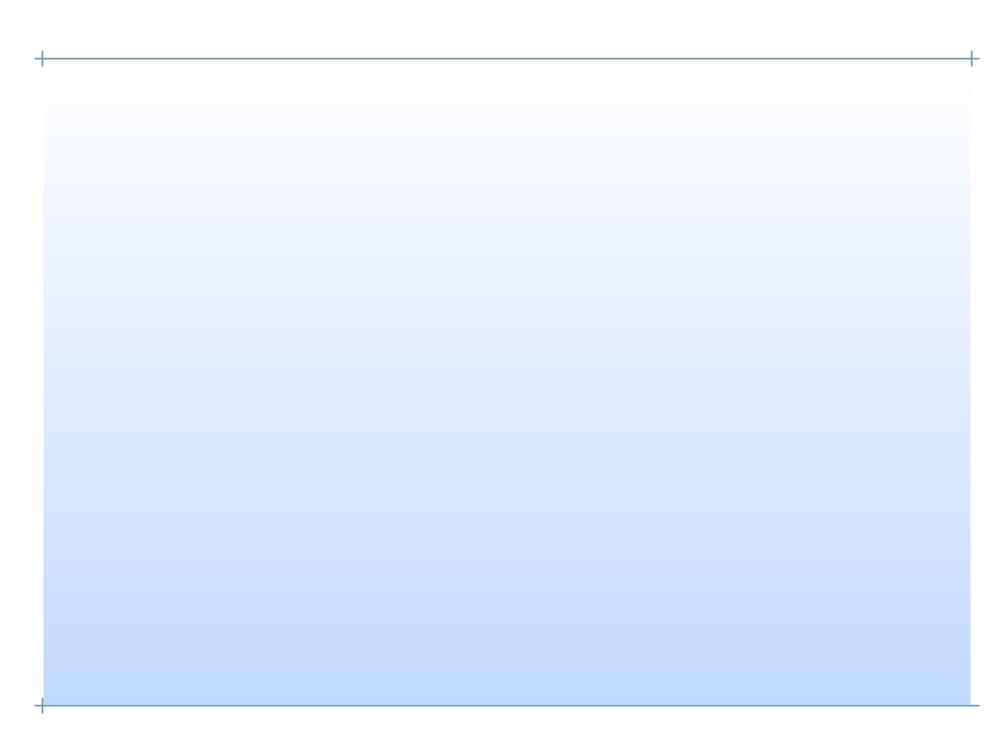
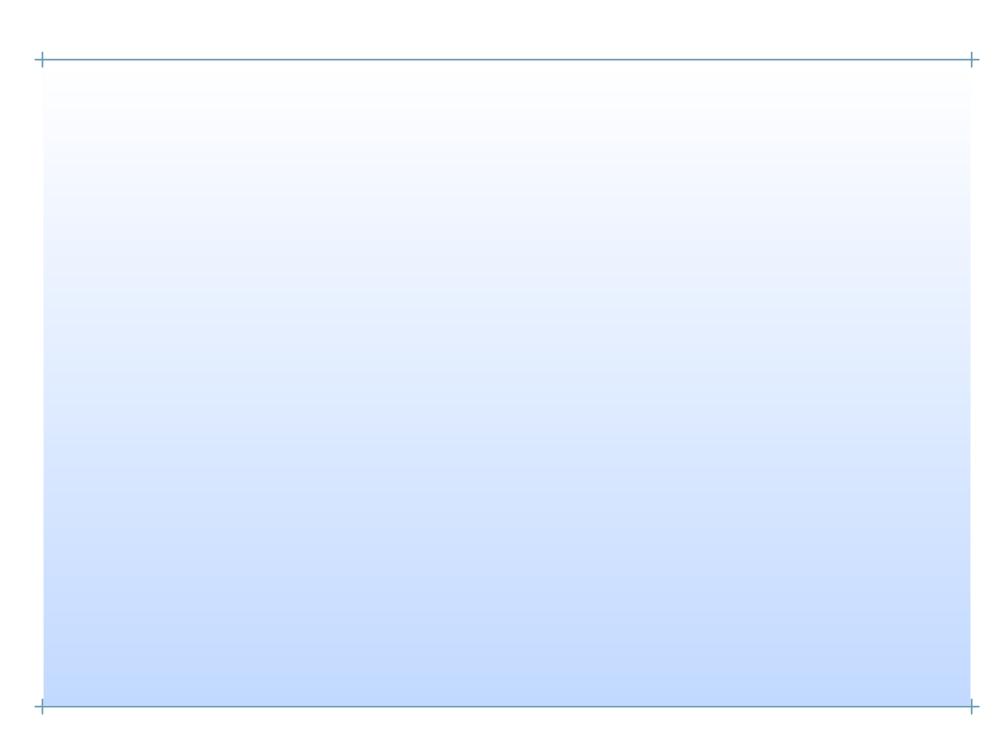


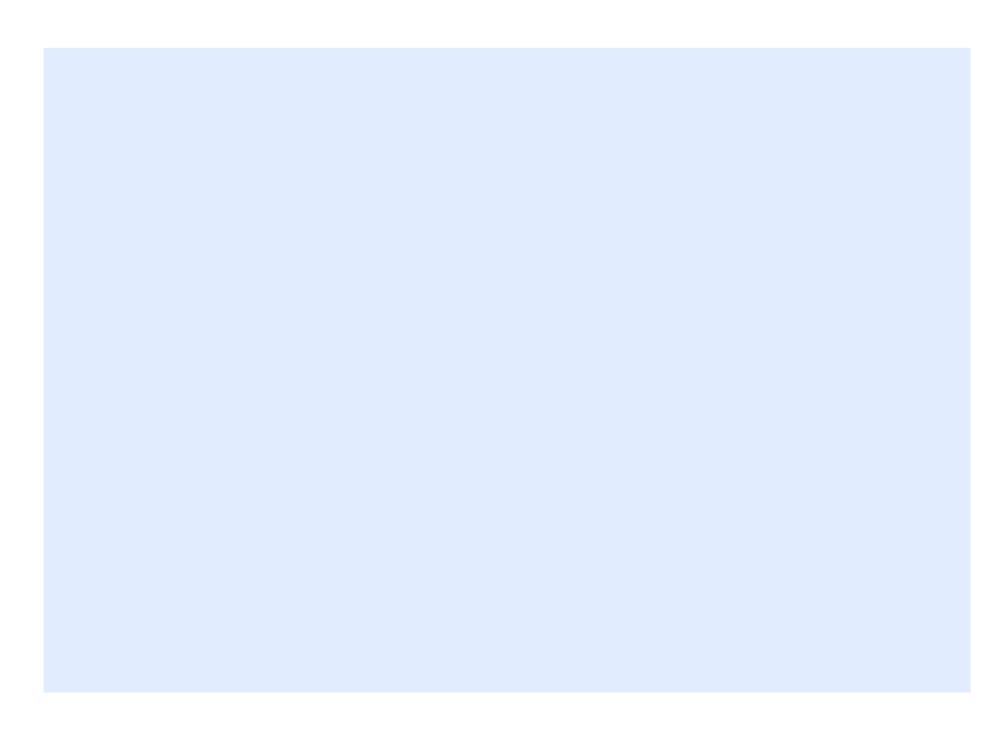
Quartic potential



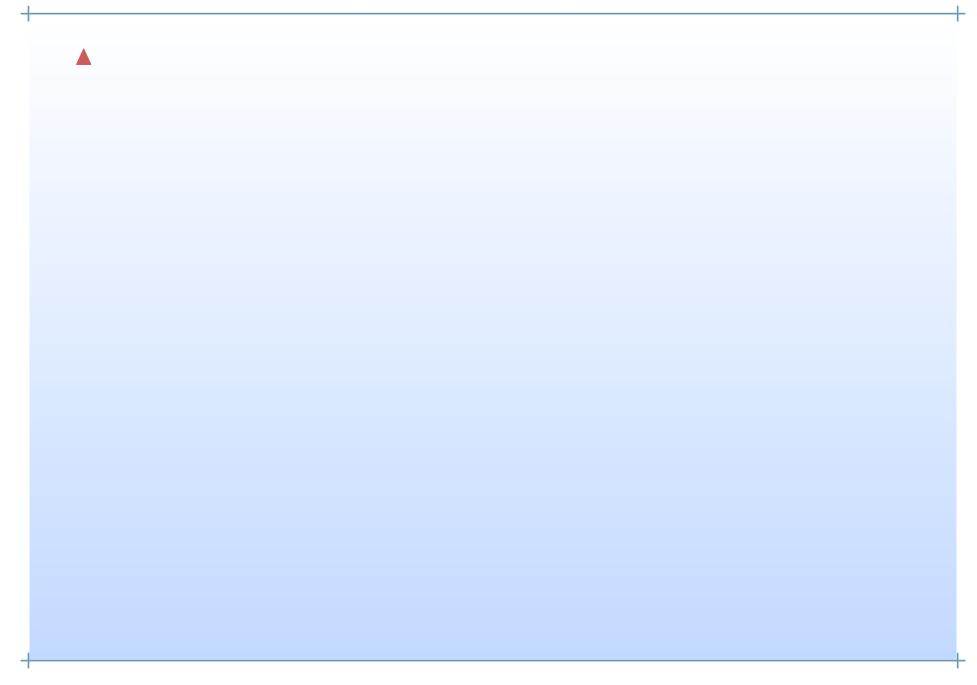


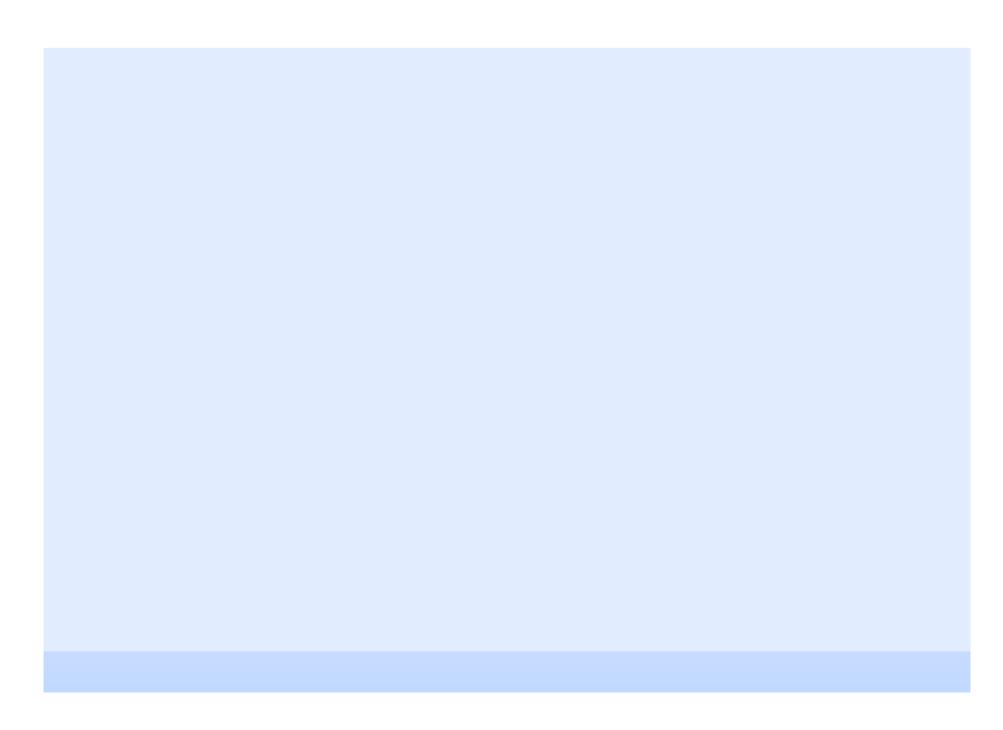


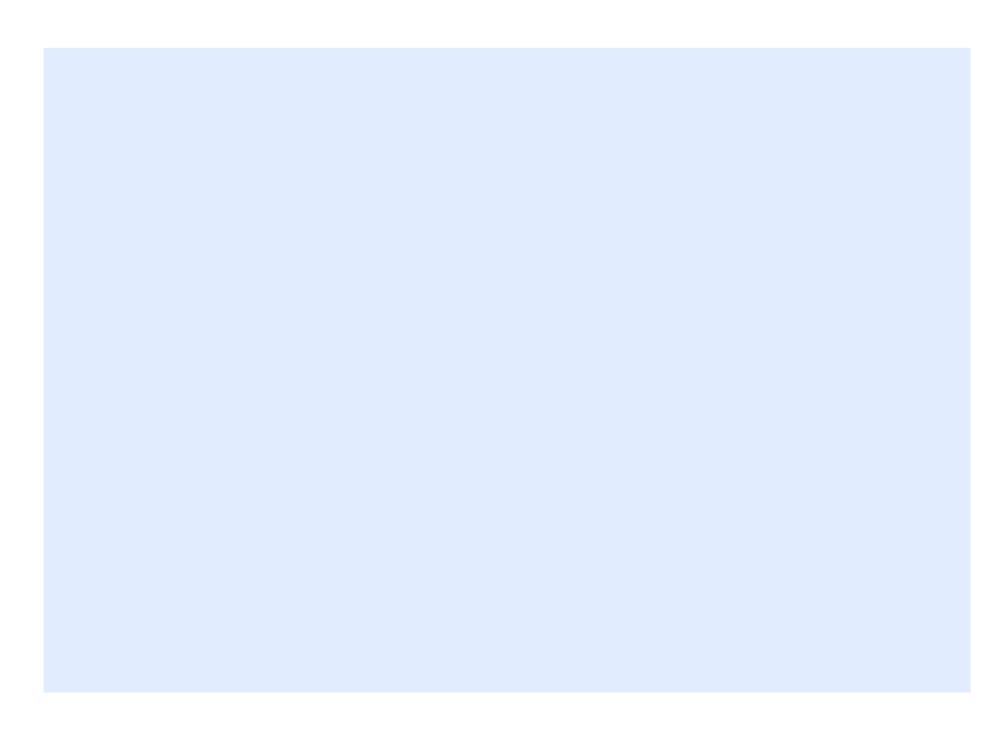


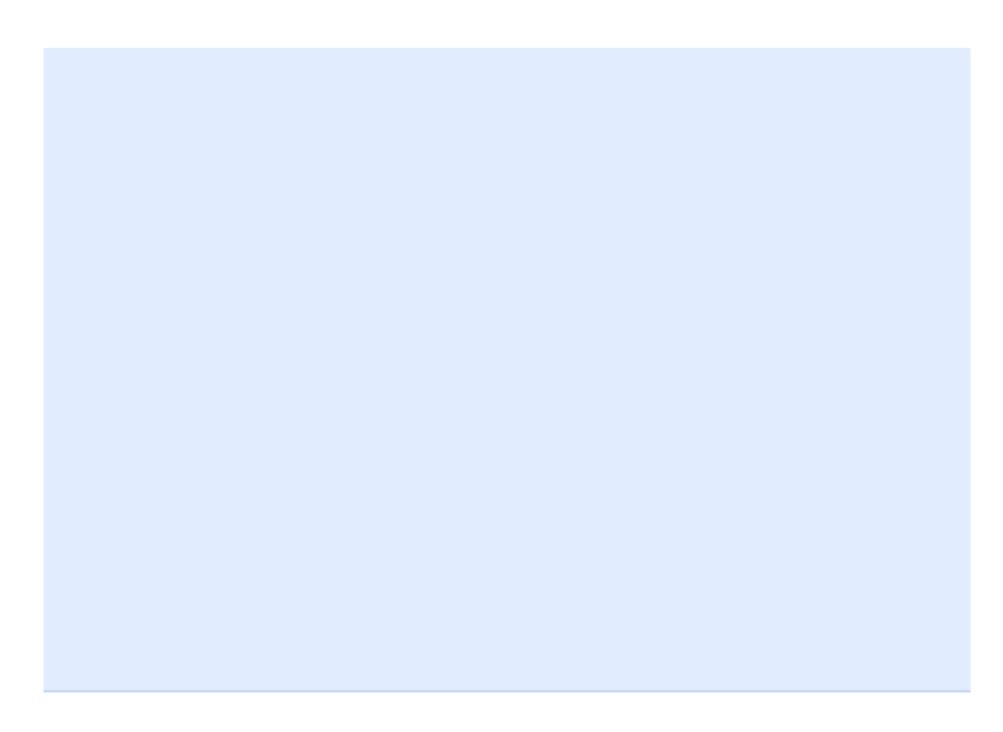


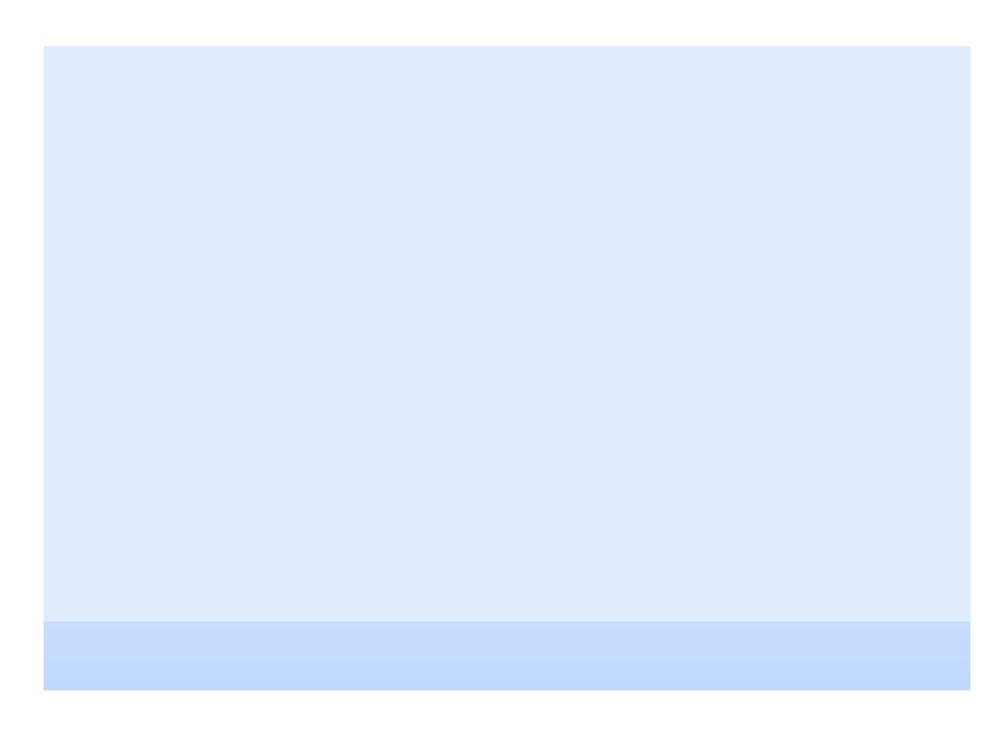
Squared Bessel process











The polynomial

$$B_k(x) = \mathbb{E} \left(\begin{array}{c} k \\ j \\ 1 \end{array} \right) (x - x_j(t)) ,$$

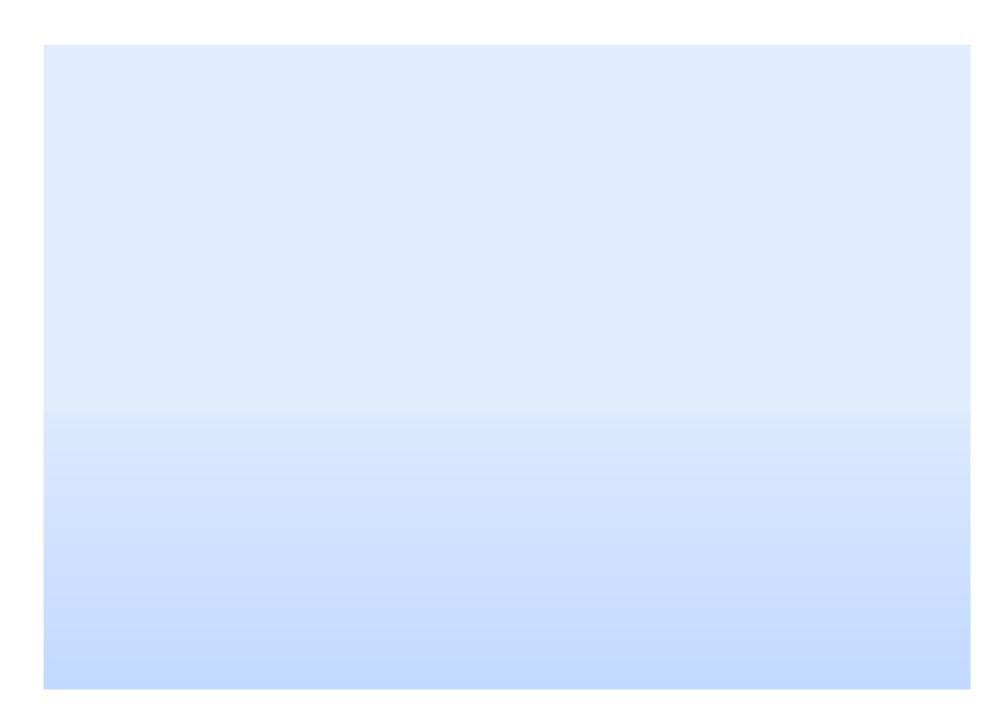
is a monic polynomial of degree k, that satisfies

$$B_{k}(x)x^{j}w_{1}(x)dx = 0, \quad \text{for } j = 0, 1, \dots, \lceil k/2 \rceil - 1,$$

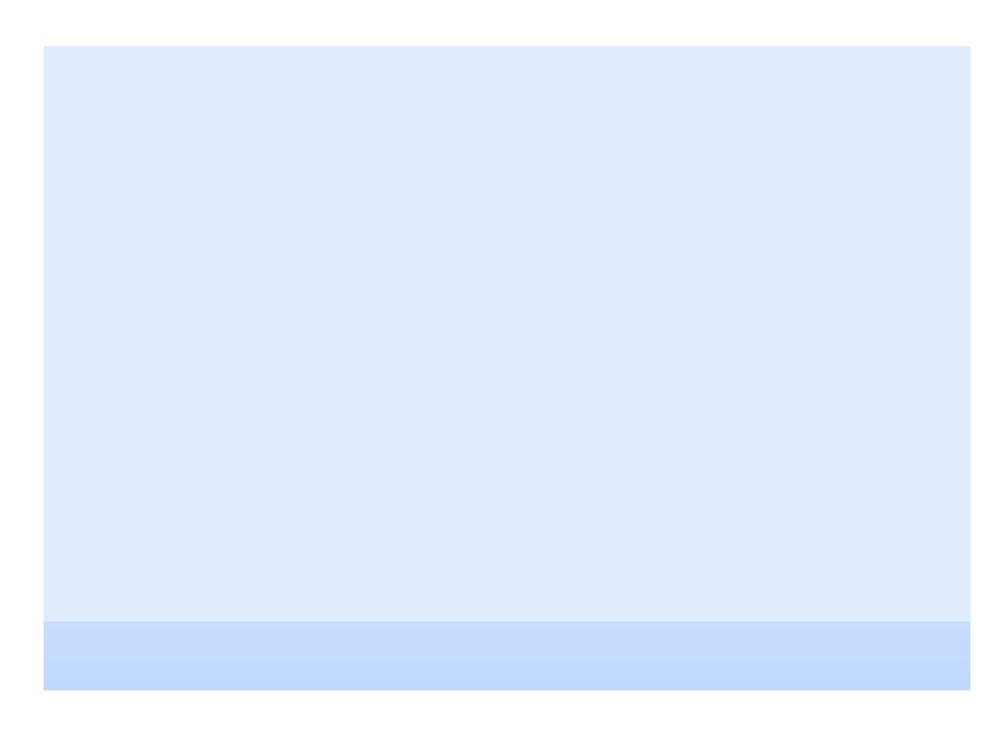
$$B_{k}(x)x^{j}w_{2}(x)dx = 0, \quad \text{for } j = 0, 1, \dots, \lfloor k/2 \rfloor - 1,$$
0

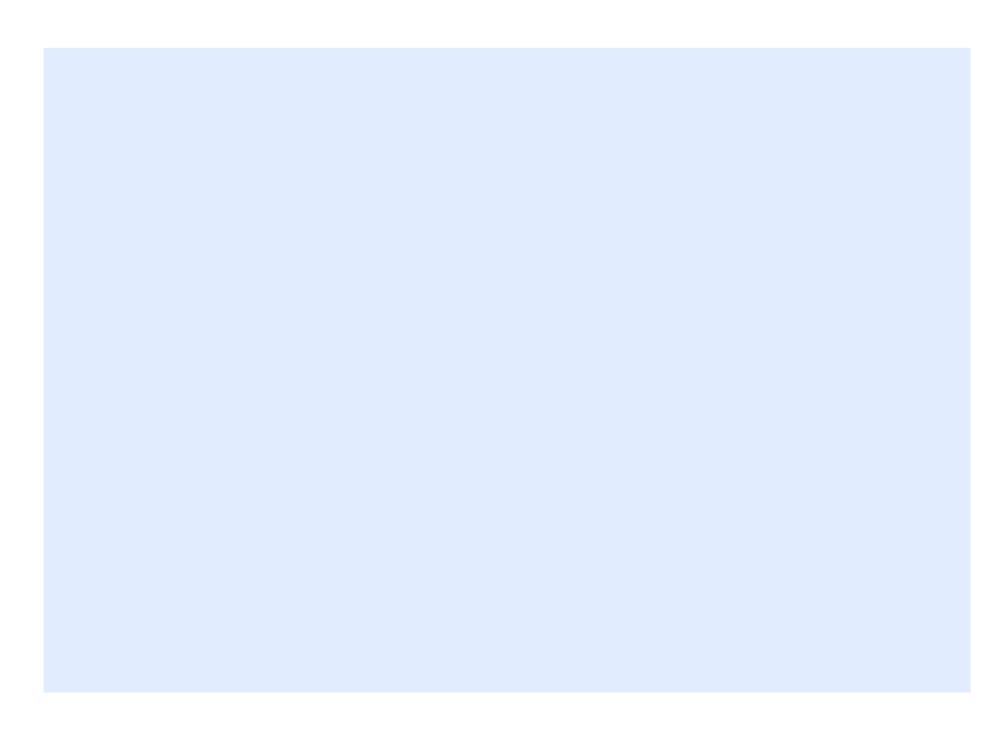
Two weight functions

$$w_1(x) = x^- e^{-\frac{\mathsf{T} \mathsf{x}}{\mathsf{t} - \mathsf{t}}} I_\alpha \quad \frac{\sqrt{ax}}{t}$$
$$w_2(x) = x^- e^{-\frac{\mathsf{T} \mathsf{x}}{\mathsf{t} - \mathsf{t}}} I_{\alpha - 1} \quad \frac{\sqrt{ax}}{t}$$









Symbol

▲ The symbol of the Toeplitz matrix is

$$A(z) = z + b + cz^{-1} + dz^{-2}$$

A The equation A(z) = x has three solutions $z_1(x)$, $z_2(x)$, $z_3(x)$ ordered so that

$$|z_1(x)| \ge |z_2(x)| \ge |z_3(x)|$$

Define sets

$$_{1} = \{ x \in \mathbb{C} \mid |z_{1}(x)| = |z_{2}(x)| \}$$

$$_{2} = \{ x \in \mathbb{C} \mid |z_{2}(x)| = |z_{3}(x)| \}$$

A FACT 1: The eigenvalues of T_n accumulate as $n \to \infty$ on $_1$

Schmidt-Spitzer (1960)

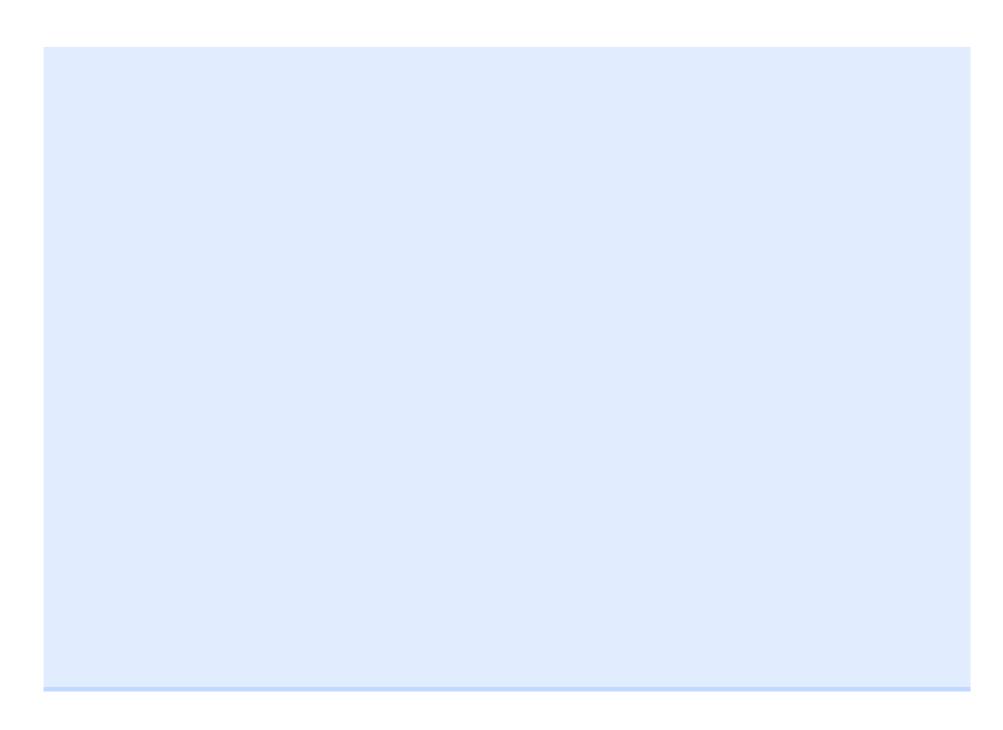
▲ FACT 1: The eighi

Fact 3

A Define μ_2 on $_2$ by

$$d\mu_2(x) = \frac{1}{2\pi i} \quad \frac{z'_{2-}(x)}{z_{2-}(x)} - \frac{z'_2(x)}{z_2(x)} \quad dx$$

1 Then μ_2 is a positive measure on2



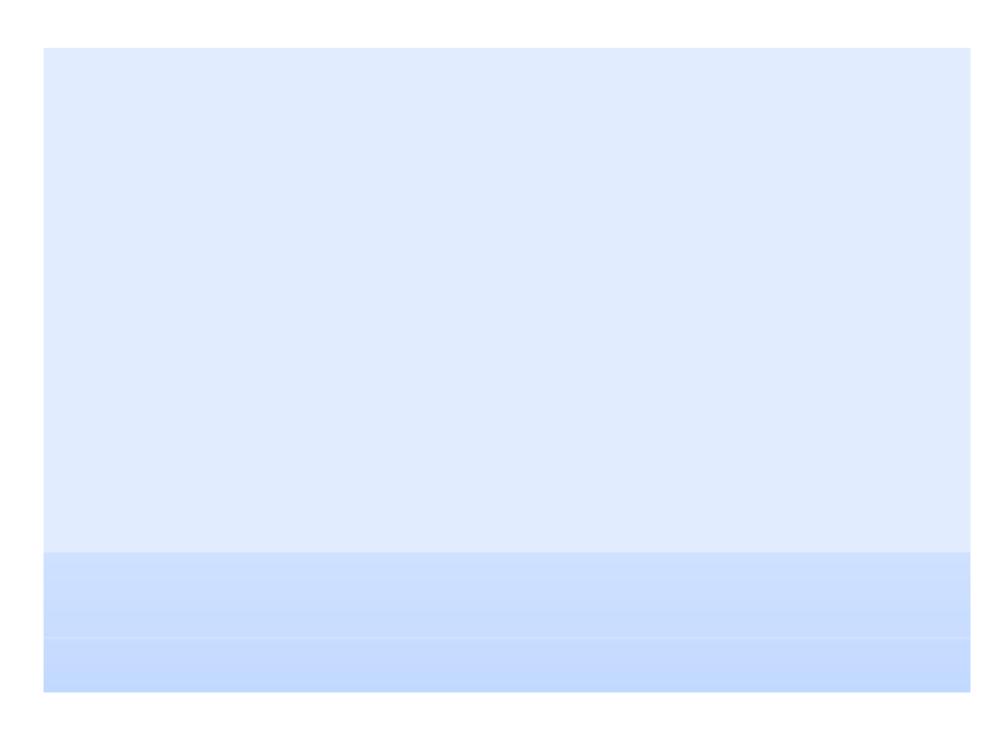
Family of Toeplitz matrices

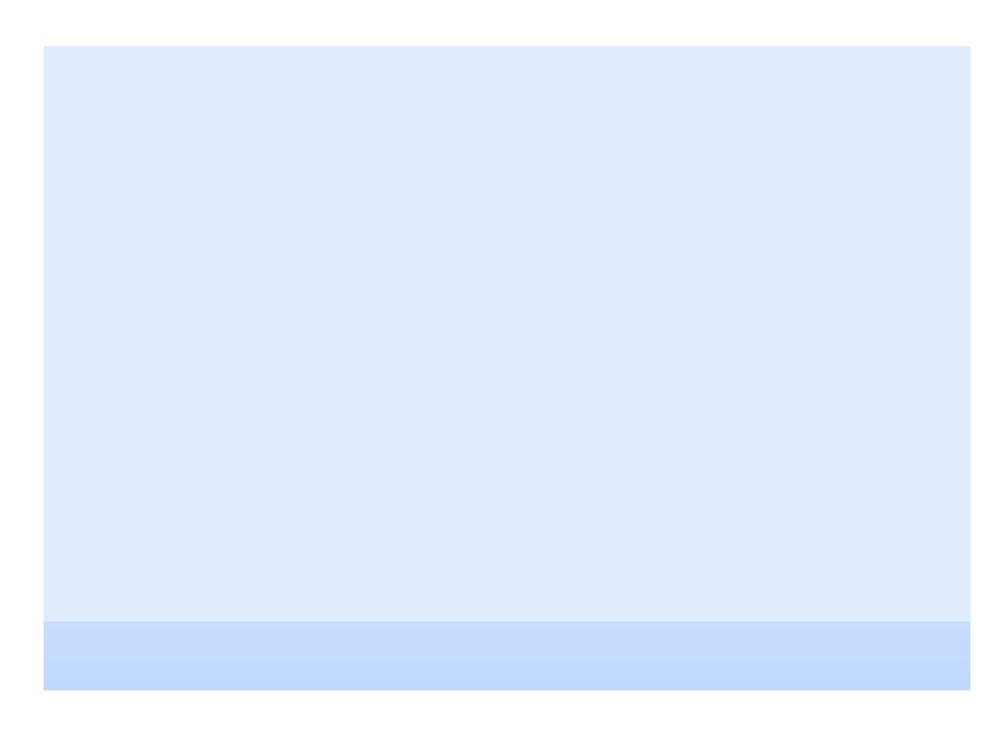
Consider for each $s \ge 0$ the Toeplitz matrix with symbol

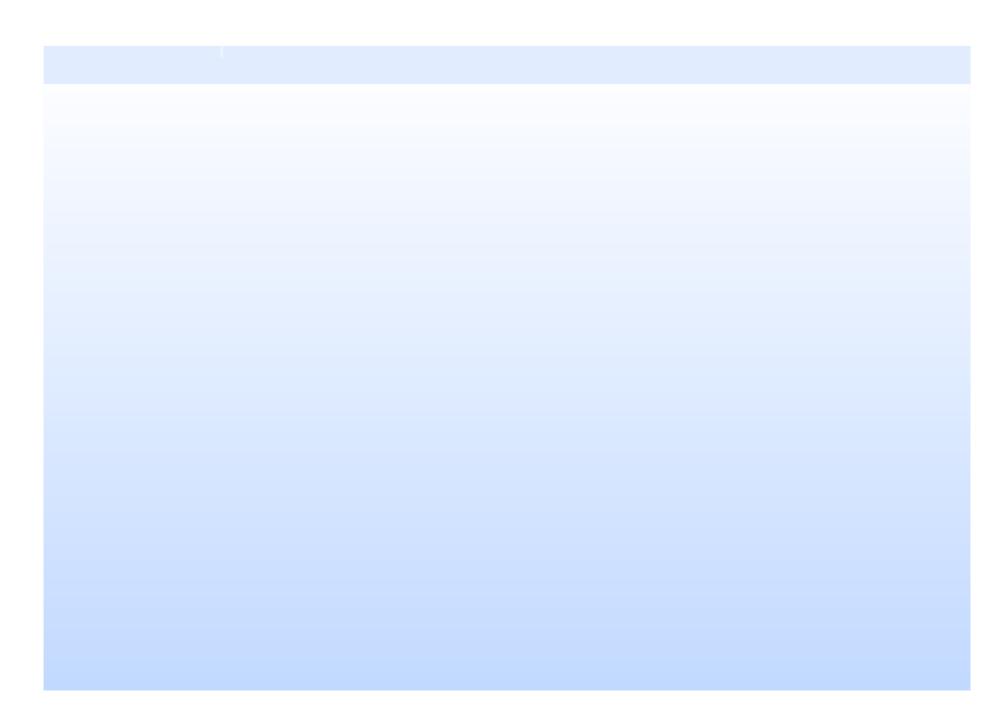
$$A_s(z) = z + b(s) + c(s)z^{-1} + d(s)z^{-2}$$
$$= \frac{(z + a(1 - t)^2)(z + st(1 - t))^2}{z^2}$$

A Then we have solutions of $A_s(z) = x$

$$z_1$$
 (xxxxs







THEOREM 2

L The fact that $_1(s)$ increases leads to the external field V acting on ν_1 with

$$V(x) = \int_{0}^{0} \log \frac{z_1(x,s)}{z_2(x,s)} ds$$

L The fact that $_2(s)$ decreases leads to the upper constraint σ for ν_2 with

$$\sigma = \prod_{0} \mu_{2}^{s} ds = \frac{1}{2\pi i} \prod_{0} \frac{z'_{2-}(x,s)}{z_{2-}(x,s)} - \frac{z'_{2}(x,s)}{z_{2}(x,s)} ds$$

(ν_1, ν_2) is minimizer of the energy functional

$$I(\nu_1) + I(\nu_2) - I(\nu_1, \nu_2) + V(x) d\nu_1(x)$$

among ν_1 on [0, ∞), $d\nu_1 = 1$, ν_2 on ($-\infty$, 0], $d\nu_2 = 1/2$ and

$$\nu_2 \leq \sigma$$

