< □ ▶

◆□ → ◆□ → ◆目 → ◆目 → ● ● ● ● ●

The nonlinear Schrödinger equation on metric graphs Physic pp ic tions of the NLSE

- Shallow water waves
- ۲

<□> <□> <□> <三> <三> <三> <三> <三> ○へ⊙

es on _etric gr phs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

es on _etric gr phs

 linear waves: quantum graphs Schrödinger/Helmholtz equation, Dirac equation, Bogoliubov-de Gennes equation. The nonlinear Schrödinger equation on metric graphs he st tion ry NLSE in one di

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$-\psi''(\mathbf{x}) + g|\psi(\mathbf{x})| \ \psi(\mathbf{x}) = E\psi(\mathbf{x})$

The nonlinear Schrödinger equation on metric graphs he st tion ry NLSE in one di

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$-\psi''(\mathbf{x}) + g|\psi(\mathbf{x})| \ \psi(\mathbf{x}) = E\psi(\mathbf{x})$

The nonlinear Schrödinger equation on metric graphs he st tion ry NLSE in one di

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$-\psi''(\mathbf{x}) + g|\psi(\mathbf{x})| \ \psi(\mathbf{x}) = E\psi(\mathbf{x})$$

- coupling constant *g* may be positive (repulsive) or negative (attractive)
- 'energy' E
- integrable, stationary solutions are known (Carr et al

C ssic dyn _ics pict re for NLSE for E > 0

$$\tau = \sqrt{E}x, \qquad \psi(x) = \sqrt{\frac{2E}{|g|}}r(\tau)e^{i\theta(\tau)}, \qquad \sigma = \frac{g}{|g|}$$

NLSE is generated by Lagrangian

$$L = \frac{\dot{r} + r \dot{\theta}}{2} - \frac{r + \sigma r}{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 二、

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 二、

C ssic dyn _ics pict re for NLSE for E > 0

$$\tau = \sqrt{E}x, \qquad \psi(x) = \sqrt{\frac{2E}{|g|}}r(\tau)e^{i\theta(\tau)}, \qquad \sigma = \frac{g}{|g|}$$

NLSE is generated by Lagrangian

$$L = \frac{\dot{r} + r \dot{\theta}}{2} - \frac{r + \sigma r}{2}$$

conjugate momenta

- $p = \frac{\partial \mathbf{L}}{\partial \mathbf{\zeta}} = \dot{r}$: radial momentum
- $\ell = \frac{\partial L^{i}}{\partial \theta} = r \dot{\theta}$: angular momentum (conserved)
- angular momentum \rightarrow flux

$$\psi^*\psi' = \frac{\mathbf{E}}{|\mathbf{g}|} (rp + i\ell)$$

• If $\ell = 0$ one may choose ψ to be real

The nonlinear Schrödinger equation on metric graphs ntegr tion of the st tion ry NLSE

Two constants of motion

$$\ell = r \dot{\theta} \qquad \mathcal{E}_{\mathcal{F}} t^{\dagger r} = r$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The nonlinear Schrödinger equation on metric graphs ntegr tion of the st tion ry NLSE

Two constants of motion

$$\ell = r \dot{\theta} \qquad \mathcal{E}_{F} t^{i} = \frac{\dot{r}}{2} + V \bullet (r, \ell)$$

with e ective potential

 $V \bullet (r; \ell) = -\ell$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 二、

- vertices *i* = 1, 2, ..., *V*
- edges may either be finite bonds b ≡ (i, j) that connect two vertices i and j
 or infinite leads l = (i,∞) that start a vertex i and go to infinity.

< □ ▶

▲□▶ ▲圖▶ ▲≧▶ 三甲

NLSE on ____etric gr ph

۲

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필 - - 오

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Consider one vertex with v incident edges and coordinates x₁, x ,..., x_v such that x_i = 0 at the vertex and g_i = g_j = g.
- Contin ity:

 $\psi_{\mathbf{i}}(\mathbf{0}) = \psi_{\mathbf{j}}(\mathbf{0}) = \psi_0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Consider one vertex with v incident edges and coordinates x₁, x , ..., x_v such that x_i = 0 at the vertex and g_i = g_j = g

F conser tion

◆□ → ◆□ → ◆目 → ◆目 → ● ● ● ● ●

F conser tion

Robin-type matching conditions in terms of the classical dynamics picture (with $\psi_0 = \sqrt{2E/|g|}r_0e^{i\theta_0}$)

$$\sqrt{E}\sum_{j=1}^{\mathbf{v}} \left(\dot{r}_{j} + ir_{j}\dot{\theta}_{j}\right) e^{\mathbf{t}\mathbf{i}\theta_{j}} = \lambda r_{0}e^{\mathbf{i}\theta_{0}}$$

where the left-hand side is evaluated at the vertex $x_j = 0$ ($\tau_j = 0$).

$$\sum_{j=1}^{v} p_j = \frac{\lambda}{\sqrt{E}}$$
$$\sum_{j=1}^{v} \ell_j = 0$$

Sum of fluxes (outgoing) at each vertex vanishes.

Ho to nd the so tion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider a finite graph with V vertices and B bonds (no leads) and fix an energy E > 0.

◆□ → ◆□ → ◆目 → ◆目 → ● ● ● ● ●

Ho to nd the so tion

Ho to nd the so tion

Consider a finite graph with V vertices and B bonds (no leads) and fix an energy E > 0. The wave function $\psi_b(x_b)$ on bond b is characterised by two parameters (e.g. $\ell_{b_L} \mathcal{E}_{F} \stackrel{\text{tr}}{\to} b$)

Given a set of V complex numbers φ_i = find ℓ_b and EHam, b such that ψ_b(x_b = 0) = φ_i and ψ_b(L_b) = φ_j. Classical picture: find trajectories that connect to two points in configuration space in a given time.

The Robin-type matching conditions are then a set of v equations for v unknowns \u03c6_i.
 Each solution {\u03c6_i} yields a wave function on the nonlinear graph.

<□> ∂

◆□ → ◆□ → ◆目 → ◆目 → ● ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The physical relevance of the 'spectrum' is questionable apart from the ground state energy

The nonlinear Schrödinger equation on metric graphs Sc ttering from non ine r gr ph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The physical relevance of the 'spectrum' is questionable apart from the ground state energy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 二、

$0 \ too$

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>