Brunel University, 19 December 2008 1

"Angular" matrix integrals

A. Prats Ferrer, B. Eynard, P. Di Francesco, J.-B. Z.. "*Correlation Functions of .ys.ber @niZ.*

Brunel University, 19 December 2008 *J.-B. Zuber*

Matrix integrals

over a compact group *G*, are frequently encountered in physics (and in maths) : "Bessel matrix functions" or "angular matrix integrals". $G = O(N), U(N), Sp(N)$, with respectively = 1,2,4. Invariance under $J = \frac{1}{2} J^2$ and $A = \frac{1}{2} J^4$ $\frac{1}{1}$, *B* $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$, resp. Z_G expressible as a sum of *i* if $(JJ^{\dagger})^{p_i}$ and $Z^{(G)}$ as a sum of \int *j* tr A^{p} j tr B^{q}

$$
Z_G = \int_G D \exp N \qquad e(\text{tr}(\mathcal{J})) \tag{1}
$$

$$
Z^{(G)} = \int_G D \exp N \qquad e(\text{tr}(A \ B^{-1})) \tag{2}
$$

Brunel University, 19 December 2008 3

Matrix integrals

over a compact group *G*, are frequently encountered in physics (and in maths) : "Bessel matrix functions". Mostly studied for $G = U(N)$ (= 2). What happens for other groups, e.g. $G = O(N)$ (= 1), Sp(N) (= 4)?

$$
Z_G = \int_G D \exp N \qquad e(\text{tr}(\mathcal{A}B^+))
$$

\n
$$
Z^{(G)} = \int_G D \exp N \qquad e(\text{tr}(A B^+))
$$
\n(2)

- if they are neither, ...?
- Expect simplification as *N* [Weingarten '78]. Universality of (1), (2).

• If *A* and *B* are both real skew-symmetric (i.e. in the Lie algebra of o(*N*)), resp. both quaternionic antiselfdual (in sp(*N*)), *Z* is known exactly from the work of Harish-Chandra '57. Also correlation functions are known [Eynard *et al*].

• If *A* and *B* are both real symmetric, resp. both quat. selfdual, much more complicated and elusive, [Brézin & Hikami '02-06, Bergère & Eynard 08].

1. The Harish-Chandra integral. [Harish-Chandra 1957]

For *A* and *B* in the *Lie algebra* g of *G*, in fact in a *Cartan* algebra

$$
Z^{(G)} = \int_G D \exp N \text{ tr} (A \ B^{-1}) = \text{const.} \sum_{W \ W} \frac{\exp N \text{ tr} AB^W}{G(A) \ G(B^W)} \tag{3}
$$

 $G(A) :=$ \rightarrow A , a product over the positive roots, W the Weyl group.

685190Td[()]T9626Tf6.57645.85190TU9626Tf7.65120Td[(B3]TJ *G*

D $\overline{1}$

1. The Harish-Chandra integral [Harish-Chandra 1957]

For *A* and *B* in the *Lie algebra* g of *G*, in fact in a *Cartan* algebra

$$
Z^{(G)} = \int_G D \quad \exp N \quad \text{tr} \ (A \quad B^{-\dagger}) = \text{const.}
$$

1. The Harish-Chandra integral [Harish-Chandra 1957]

For *A* and *B* in the *Lie algebra* g of *G*, in fact in a *Cartan* algebra

$$
Z^{(G)} = \int_G D \exp N \text{ tr} (A \ B^{-1}) = \text{const.} \qquad \frac{\exp N \text{ tr } AB^W}{\omega W \sigma(A) \sigma(B^W)} \qquad (5)
$$

 $G(A) :=$ \rightarrow A , a product over the positive roots, W the Weyl group. More concretely, for $G = U(N)$, take $A = diag(a_i)$, $B = diag(b_i)$ $Z^{(U)} = \text{const.} \frac{\det e^{-N a_j b_j}}{\det (a_i - a_j)(b_j)}$ *i*<*j* (*ai*−*aj*)(*bi*−*bj*) [Itzykson-Z '80] and for $G =$

Proofs of this H-C formula

- Heat kernel
\n
$$
Z = t^{-\frac{1}{2} \dim G} \int_G D e^{-\frac{1}{2t} N \text{ tr} (A - B^{-\dagger})^2} \text{ satisfies } (N - \frac{1}{t} - \frac{1}{2} \frac{2}{A})Z = 0 \text{ and}
$$
\nboundary cond $Z - \text{const} \int_G d(A - B^{-\dagger})$. Rewrite in "radial coordinates" a_i using the expression of the Laplacian

$$
\mathsf{A}^2 = \mathsf{A}^{-2}(\mathsf{A}) \mathsf{A}
$$

Brunel University, 19 December 2008

Correlation functions

What about the associated "correlation functions" of invariant traces

$$
\int D e^{-trA} B^{\dagger} tr(A^{p_1} B^{q_1} \dagger A^{p_2} \phi^{p} e
$$

Brunel University, 19 December 2008 10 and 10 a

Correlation functions

What about the associated "correlation functions" of invariant traces

$$
\int D e^{-trA B T} tr(A^{p_1} B^{q_1 - \dagger} A^{p_2} ...)
$$
\n
$$
\int D \text{ estimate } \text{d} \text{ where } \text{d} \text{ is the result of } \text{where } \text{d} \text{ is the result of } \text{where } \text{d} \text{ is the result of } \text{where } \text{d} \text{ is the result of } \text{where } \text{d} \text{ is the result of } \text{where } \text{d} \text{ is the result of } \text{where } \text{d} \text{ is the result of } \text{where } \text{d} \text{ is the result of } \text{where } \text{d} \text{ is the result of } \text{where } \text{d} \text{ is the result of } \text{there is the result of } \text
$$

2. The integral (2) in the symmetric case

$$
Z^{(G)} = \int_G D \exp N \text{ tr} (A B^{\dagger})
$$

for $A = A^{\dagger}$ and $B = B^{\dagger}$.

For *G* = U(*N*), *A* and *B* hermitian rather than *anti*hermitian, no difference, HCIZ formula works.

For $G = \mathrm{O}(\mathcal{N})$, $\mathcal A$ and $\mathcal B$ real symmetric, ??G105.982 ??G105.1898pd[(real)-250(symme10051)-25902Td[(F)15(or)]TJ/F329.96.

Many nice features

– finite (semi-classical) expansion and " -expansion" for an

Brunel University, 19 December 2008 13

 $\mu_K M_{ik} = \mu_f M_{ik} = Z$ and $\mu_f K_{ij} M_{jk} = (N \mu_f) M_{ik} b_k$. Can iterate that equation to get

j

$$
K_{ij}^p M_{jk} = M_{ik} (N)^p b_k^p
$$

and summing over *i* and *k*

{z a differential operator of order *p*

$$
\begin{pmatrix} K_{ij}^p & Z = (N')^p \text{tr} \, B^p Z \,. \end{pmatrix} \tag{7}
$$

Two remarks

1. *This solves the following problem :*

Define the differential operator D_p (/ *A*) by D_p (/ *A*) $e^{NtrAB} = N^p$ tr $B^p e^{NtrAB}$ If D_p acts on *invariant functions* $F(A) = F(A^{-\dagger})$, how to write it in terms

of $/a$

3. Large N limit

Expect things to simplify as *N* [Weingarten '78]. Look at the "free energies" :

$$
W_G(J.J^{\dagger}) = \lim_{N} \frac{1}{N^2} \log Z_G
$$

and

$$
F_G(A, B) = \lim_{N} \frac{1}{N^2} \log Z^{(G)}
$$

Then *W*(*X*) and *F*(*A*,*B*) are, *up to an overall factor*, independent of *G* = O(*N*), U(*N*)!

(Not true at finite *N* !)

More precisely,

 $W_0(J.J^{\dagger}) =$ ¹

Brunel University, 19 December 2008 17 and the state of the state

For $Z_{\text{O}} = \int_{\text{O}(M)} \text{D}O \exp{N} \text{tr}(J.O)$, follow the steps of [Brézin-Gross '80]: the trivial identity *^j* $\frac{2Z_0}{2}$ *Ji j Jk j* N^2 *ik* Z_O is reexpressed in terms of the eigenvalues \rightarrow of the real symmetric matrix *J.J^t*:

$$
4 \frac{2Z_0}{i} + \frac{2j}{j-i} \frac{Z_0}{j} - \frac{Z_0}{i} + \frac{Z_0}{i}
$$

For $Z^{(O)} = \int_{O(N)} DO \exp N \text{tr}(AOBO^t)$, take *A* and *B* both skew-symmetric, or both symmetric.

• *A* and *B* both skew-symmetric [Harish-Chandra]

block-diagonal form $A = diag$ 0 *a_i* −*aⁱ* 0 *ⁱ*=1,···,*^m* , *B* likewise, recall

(for $O(N = 2m)$), with $O(a) = 1$ *i<i* $m \left(\frac{a}{i}\right)$ $\frac{2}{i} - \frac{\partial^2}{\partial^2}$ *j*).

Regard *A* as *N* × *N* anti-Hermitian, eigenvalues $A_j = \pm i a_j$, *B* likewise. Easy to check that as N ,

$$
Z^{(O)} = \text{const.} \frac{\det(2 \cosh 2Na_i b_j)}{O(a) O(b)}
$$

$$
Z^{(U)}(A,B) = \frac{\det e^{2NA_iB_j}}{(A) (B)} \qquad \frac{(\det(e^{2Na_ib_j})_{1 \ i,j \ m}^2}{o(a) o(b)} = (Z^{(0)}(A,B))^2
$$

• *A* and *B* both symmetric

Then Bergère-Eynard equation $D_p Z = (N)^p$ tr $B^p Z(7)$, in the large *N* limit, yields

i

Can take them in diagonal form $A =$ diag a_i , $B =$ diag b_i

$$
\frac{N}{a_i} + \frac{1}{2N} \frac{1}{a_i - a_j} = \text{tr } B^p
$$
 (11)

Hence $F^{(O)}$ (= 1) satisfies same set of equations as $\frac{1}{2}F^{(U)}$ (= 2), QED.

Particular case where *A* is of finite *rank r*. Then in the expansion of $F = p, q \quad (\frac{1}{\Lambda})$ $\frac{1}{N}$ tr *A^{p_{i*}}) ($\frac{1}{N}$ $\frac{1}{N}$ tr *B^qj*), terms with a single trace of *A* dominate. In the U(*N*) case (and *N*) ([IZ '80])

$$
F^{(U)} = \frac{1}{p} (\frac{1}{N} tr A^p) \quad p(B)
$$

where *^p* (*B*) = *p*-th "non-crossing cumulant" of *B* ([Br

Spin glass Hamiltonian with *n* replicas of *N* Ising spins

$$
H = \sum_{i,j=1}^{N} \sum_{a=1}^{n} \sum_{j=1}^{a} \sum_{j=1}^{n} \sum_{j=1
$$

with a coupling O_{ij} , a real, orthogonal, symmetric matrix with an equal number of \pm 1 eigenvalues, $O = V^t$. *D*. *V*.

Have to compute $Z = \int_{O(N)} dV \exp \text{ tr } D V \quad V^t$.

Now according to Marinari, Parisi, Ritort, pretend you integrate over the unitary group,

compute
$$
\frac{1}{p}
$$
tr ρ $\rho(D) =: tr G()$

and (with some insight \ldots) the correct formula is $\frac{1}{2}G(2^-)$! \ldots

Proved later by Collins, Collins and Sniady, Guionnet & Maida

- More explicit formulae for *Z*, *F*
- A priori argument for universality, graphical argument ?
- Relations with integrability: D-H localization, finite semi-classical expansions, Calogero, ...

Conclusion and Open issues