
Department of  
Economics and Finance  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Working Paper No. 13-09 

 http://www.brunel.ac.uk/economics 

 



LONG MEMORY AND FRACTIONAL INTEGRATION  
IN HIGH FREQUENCY DATA 

ON THE US DOLLAR  / BRITISH POUND 
SPOT EXCHANGE RATE  

 
Guglielmo Maria Caporalea 
Brunel University, London 

 
Luis A. Gil-Alanab 

University of Navarra 
 

March 2013 
 
 
 

Abstract 

This paper analyses the long-memory properties of a high-frequency financial time 

series dataset. It focuses on temporal aggregation and other features of the data, and 

how they might affect the degree of dependence of the series. Fractional integration or 

I(d) models are estimated with a variety of specifications for the error term. In brief, we 

find evidence that a lower degree of integration is associated with lower data 

frequencies. In particular, when the data are collected every 10 minutes there are several 

cases with values of d strictly smaller than 1, implying mean-reverting behaviour; 

however, for higher data frequencies the unit root null cannot be rejected. This holds for 

all four series examined, namely Open, High, Low and Last observations for the US 

dollar / British pound spot exchange rate and for different sample periods. 
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dependence the zero and the cyclical frequencies can solve at least to some extent the 

problem of misspecification that might arise with respect to these two frequencies.  

However, the fractional differencing parameter may be very sensitive to the data 

frequency used in the analysis. In fact, it has often been claimed that aggregation is 
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Barkoulas and Caglayan (1999) estimated fractional ARIMA (ARFIMA) models for 

real exchange rates in the post-Bretton Woods era and found almost no evidence to 

support long run PPP. Additional studies on exchange rate dynamics using fractional 

integration are those by Crato and Ray (2000), Wang (2004), Dufrenot et al. (2006, 

2008) and Aloy et al. (2011) among others. All these papers, however, focus on low 

frequency (mainly quarterly) data, and do not examine the case of high frequency (intra-

day) data.  

The present study focuses on the case of spot exchange rates with the aim of 

gaining some insights into the interaction between fractional integration and high 

frequency data. The results suggest that lower degrees of memory are associated with 

lower data frequencies. The layout of the paper is as follows. Section 2 describes the 

econometric methodology used. Section 3 provides details of the data and discusses the 

empirical results. Section 4 summarises the main findings and offers some concluding 

remarks. 

 

2. Methodology 

There are two definitions of long memory, one in the frequen 0 TD
0 T2r-. The reo 
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Most of the existing empirical literature considers the case when the singularity 

or pole in the spectrum occurs at the zero frequency. This is the standard case of ( )dI  

models of the form: 

,...,1,0,)1( ±==− tuxL tt
d     (1) 

with xt = 0 for t  ≤  0, and d > 0, where L  is the lag-operator ( 1−= tt xLx ) and tu  is ( )0I , 

being defined in this context 
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Robinson (1994) allowing to test for any real value of d in I(d) models. This method is a 

Lagrange Multiplier (LM) procedure and is the most efficient one in the context of 

fractional integration. It tests the null hypothesis Ho: d = do for any real value do, and the 
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samples of one day and a half on the basis of the computational time required when 

working with high frequency data in the context of long memory and fractional 

integration. However, we also conducted the analysis for a longer time series containing 

about 4,000 observations (or roughly a week) and the results were once again 

completely in line with those reported here. We examine four series: Open, High, Low 

and Last values of the exchange rate collected every minute, where High (Low) stands 

for the highest (lowest) price and Open (Last) for the initial (last) price observed in that 

time interval. The aim is to detect whether there exist anomalies in the behaviour of 

each of the series.  

[Insert Figures 1 – 4 about here] 

 Figure 1 shows plots of the four series. The corresponding returns, obtained as 

the first differences of the log-prices, are shown in Figure 2. Figures 3 and 4 display the 

correlograms and the periodograms of the return series. The values of the former seem 

to indicate that the original series may be I(1), suggesting the possibility of random 

walk behaviour; however, the presence of some significant values in the correlograms 

of the first differenced (logged) data, even at lags far away from zero might indicate 

weak autocorrelation and/or
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where yt is the time series observed, α and β are the deterministic terms (an intercept 

and a linear time trend respectively), and xt is assumed to be I(d), where d can be any 

real number. Different assumptions will be made about the error term ut in (2).5 

[Insert Table 1 about here] 

 Table 1 displays the results of the Whittle estimates of d along with the 95% 

confidence interval of the non-rejection values according to Robinson’s (1994) 

parametric approach. The error term ut is assumed to be a white noise in Table 1a, an 

AR(1) process in Table 1b, whilst it is specified using the exponential spectral model of 

Bloomfield (1973) in Table 1c. The latter is a non-parametric approach to modelling 

I(0) terms that produces autocorrelations decaying exponentially as in the AR(MA) 

case. 

 Table 1 shows the results of the estimated values of d, for the three standard 

cases of no regressors (i.e., α = β = 0 in (2)), an intercept (α unknown and β = 0), and an 

intercept with a linear time trend (α and β unknown). Starting with the case of white 

noise errors (Table 1a), it can be seen that for “Open” and “Last” the estimates are 

slightly below 1, though the unit root null cannot be rejected in any case. However, for 

“High” and “Low” the unit root hypothesis is rejected in favour of higher degrees of 
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reversion. When adopting the more general Bloomfield specification (Table 1c), the unit 

root null hypothesis is never rejected, clearly suggesting that the returns series are I(0). 

The t-values imply that the time trend coefficients are not statistically significant, whilst 

the intercepts are always significant. Thus, the model with an intercept seems to be the 

most adequate specification for these series.  

[Insert Figures 5 and 6 about here] 

Next we focus on the variance of the return series and examine the squared and 

absolute returns, which are used as proxies for volatility. These two measures have been 

widely employed in the financial literature to measure volatility.6 Plots of the absolute 

return series are displayed in Figure 5, while Figure 6 shows the squared returns. No 

structural breaks are apparent in any of these figures. 

[Insert Table 2 about here] 

 Table 2 reports the estimates of d for the absolute and squared returns under the 

assumption that the error term is white noise. Very similar results were obtained 

imposing weakly autocorrelated errors. The estimates are significantly positive in all 
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 In the context of high frequency data, it is interesting to investigate if the same 

result holds as the distance between observations increases. For this purpose we 

examine again the long memory property of the same variables but now using data 

which are collected every 2, 3, 5 and 10 minutes respectively. 

[Insert Table 3 about here] 
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in the relationship between data frequency and the order of integration in the volatility 

processes is also found in the case of autocorrelated errors. 

 Finally, we employ a semiparametric method to estimate the values of d for the 

series of interest, without assuming a functional form for the error term. We follow a 

procedure developed by Robinson (1995). This method is essentially a local ‘Whittle 

estimator’ in the frequency domain, which uses a band of frequencies that degenerates 

to zero. The estimator is implicitly defined by: 

,log12)(logminargˆ
1
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Fama, 1970), but mean reversion is often found (see, e.g., Poterba and Summers, 1988). 

More recently, it has become clear that it is essential to consider the possibility of 

fractional integration in order to analyse the long-memory properties and to allow for a 

much richer dynamic specification. Various models have been suggested, increasingly 

general (see, e.g., Caporale and Gil-Alana, 2002, 2007, 2008). The first contribution of 

the present study is to show that indeed exchange rates dynamics may incorporate long 

memory components. A potentially crucial issue which has been overlooked is the 

extent to which the fractional differencing parameter might be sensitive to the data 

frequency.  The second contribution of this paper is to examine this issue empirically 

using high frequency data on the US dollar-British pound spot exchange rate. In 

particular, we examined intra-day data (collected every 1, 2, 3, 5 and 10 minutes) for the 

open, close, high and low values of the exchange rate. In brief, we find evidence that a 

lower degree of integration is associated with lower data frequencies, and this holds for 

all the sample periods examined. In particular, when the data are collected every 10 

minutes there are several cases with values of d strictly smaller than 1, implying a 

certain degree of mean-reverting behaviour; however, for higher data frequencies the 

unit root null cannot be rejected. This is the case for all the four series examined, and 

for different periods within the sample.  

 The above results indicate that the order of integration of a time series observed 

at different intervals may differ. There is no an obvious argument to justify this result. 

One possibility could be that the data generating process changes with the sampling 

frequency, although Hassler (2011) showed that this argument is not very strong as in 

the case of nonstationary fractional integration many of the basic time series properties 

are preserved under skip sampling. A more plausible argument could be the existence of 

a bias in the estimation results. Here we have two potential biases. One arises from  
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temporal aggregation as suggested by Souza and Smith (2002).10 A second type of bias 

may arise from the high frequency of the data. It is well known that in this case there is 

microstructure noise and that this noise component becomes stronger as the sampling 

frequency increases. In the context of the semiparametric log-periodogram estimator 

Sun and Phillips (2003) derived an explicit form for this bias, which is negative and 

increases in absolute value as the variance of the noise increases. Sun and Phillips 

(2004) conjecture that the bias for Whittle-type estimators should be similar. Thus, we 

have two potential forces that move the bias in opposite directions. Which bias 

dominates in the case of the methods employed in the present study will be examined in 

future papers. 

In essence, the results suggest that series that are expected to be I(1) consistently 

with market efficiency might not be so if the sampling frequency is high. Thus, for the 

10-minute data, the unit root hypothesis is rejected in favour of mean reversion, 

Although this does not necessarily imply that the market is inefficient, since the 

assumption of a random walk is merely a sufficient but not a necessary condition for the 

EMH.11 

 Finally, it might be asked whether the lower degrees of dependence observed at 

the lower frequencies is the result of small sample bias. However, it should be noted 

that even at the lowest data frequencies the sample size is large enough to justify the 

estimation of a fractional integration model. Extending the dataset to longer periods of 

time produced very similar results at a high computational cost (all computations were 

obtained using Fortran and the codes of the programs are available from the authors 

upon request). Other approaches could be applied to these and other high frequency data 

                                                 
10 These authors investigated this bias for parametric and semiparametric estimates of d and showed that 
the estimates decreased to zero as the sampling frequency decreases. 
11 Note that some of the findings in this paper suggest that the absolute and the squared returns are I(d) 
with d positive and small, which makes the assumption of a constant variance also questionable. 
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Figure 1: Series in levels 
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Table 1: Estimates of the fractional differencing parameter d 

a)    White noise errors 

 No regressors An intercept A linear time trend 

Open 0.997  (0.970,  1.027) 0.983  (0.955,  1.015) 0.983  (0.956,  1.015) 

High 0.998  (0.971,  1.028) 1.101  (1.066,  1.141) 1.101  (1.066,  1.141) 

Low 0.997  (0.970,  1.027) 1.130  (1.095,  1.169) 1.130  (1.095,  1.169) 

Last 0.998  (0.970,  1.028) 0.977  (0.950,  1.007) 0.977  (0.950,  1.007) 

         b)   AR (1) errors 

  No regressors An intercept A linear time trend 

Open 1.381  (1.328,  1.441) 0.973  (0.923,  1.031) 0.974  (0.924,  1.031) 

High 1.382  (1.329,  1.442) 0.934  (0.879,  0.996) 0.936  (0.883,  0.996) 

Low 1.381  (1.327,  1.440) 0.969  (0.907,  1.037) 0.970  (0.910,  1.037) 

Last 1.382  (1.329,  1.442) 1.004  (0.954,  1.060) 1.004  (0.955,  1.060) 

c)   Bloomfield-type errors 

 No regressors An intercept A linear time trend 

Open 0.997  (0.944,  1.041) 0.963  (0.922,  1.029) 0.970  (0.923,  1.029) 

High 0.991  (0.950,  1.042) 0.962  (0.914,  1.006) 0.962  (0.915,  1.006) 

Low 0.990  (0.951,  1.047) 0.988  (0.939,  1.047) 0.988  (0.940,  1.047) 

Last 0.998  (0.950,  1.049) 1.010  (0.955,  1.057) 1.010  (0.955,  1.057) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 
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Figure 5: Absolute returns                
Open High 
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Table 2: Estimates of d for the absolute and squared returns with white noise errors 

a)   Absolute returns 

 No regressors An intercept A linear time trend 

Open 0.149  (0.131,  0.171) 0.148  (0.130,  0.168) 0.144  (0.126,  0.165) 

High 0.162  (0.142,  0.185) 0.159  (0.140,  0.181) 0.156  (0.136,  0.178) 

Low 0.154  (0.134,  0.171) 0.151  (0.132,  0.172) 0.149  (0.129,  0.176) 

Last 0.143  (0.123,  0.167) 0.142  (0.124,  0.163) 0.136  (0.117,  0.158) 

b)   Squared returns 

 No regressors An intercept A linear time trend 

Open 0.106  (0.088,  0.126) 0.107  (0.089,  0.127) 0.103  (0.085,  0.124) 

High 0.098  (0.078,  0.121) 0.099  (0.080,  0.122) 0.094  (0.074,  0.118) 

Low 0.098  (0.079,  0.120) 0.099  (0.080,  0.121) 0.096  (0.077,  0.118) 

Last 0.106  (0.088,  0.128) 0.109  (0.090,  0.130) 0.102  (0.082,  0.124) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 
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Table 3: Estimates of the fractional differencing parameter based on white noise ut 

a)   2 minutes 

 No regressors An intercept A linear time trend 

Open 0.994  (0.956,  1.038) 0.980  (0.939,  1.028) 0.980  (0.940,  1.028) 

High 0.994  (0.956,  1.038) 1.034  (0.989,  1.087) 1.034  (0.989,  1.087) 

Low 0.995  (0.957,  1.039) 1.062 (1.017,  1.116) 1.062 (1.017,  1.115) 

Last 0.994  (0.957,  1.039) 0.989  (0.948,  1.035) 0.989  (0.949,  1.035) 

b)    3 minutes 

 No regressors An intercept A linear time trend 

Open 0.992  (0.946,  1.047) 0.962  (0.912,  1.019) 0.963  (0.914,  1.019) 

High 0.992  (0.946,  1.047) 1.003  (0.950,  1.066) 1.003  (0.951,  1.065) 

Low 0.993  (0.947,  1.048) 1.041 (0.984,  1.108) 1.041 (0.985,  1.107) 

Last 0.992  (0.946,  1.048) 0.958  (0.907,  1.016) 0.958 0.910,  1.016) 

                                                             c)    5 minutes 

 No regressors An intercept A linear time trend 

Open 0.990  (0.930,  1.064) 0.941  (0.872,  1.024) 0.942  (0.877,  1.024) 

High 0.990  (0.931,  1.064) 0.948  (0.880,  1.030) 0.949  (0.885,  1.030) 

Low 0.990  (0.931,  1.064) 0.981 (0.910,  1.069) 0.982 (0.913,  1.068) 

Last 0.989  (0.930,  1.063) 0.942  (0.874,  1.024) 0.944  (0.879,  1.023) 

                                                            d)    10 minutes 

 No regressors An intercept A linear time trend 

Open 0.977  (0.895,  1.088) 0.831  (0.719,  0.957) 0.848  (0.761,  0.961) 

High 0.978  (0.895,  1.089) 0.869  (0.766,  0.990) 0.881  (0.794,  0.991) 

Low 0.977  (0.895,  1.088) 0.860 (0.750,  0.987) 0.873 (0.784,  0.988) 

Last 0.978  (0.895,  1.089) 0.861  (0.755,  0.983) 0.872  (0.785,  0.985) 
 The values in parentheses give the 95% confidence band for the non-rejection values of d. 
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Table 4: Estimates of d for the absolute returns  
                                                            a)    2 minutes 

 No regressors An intercept A linear time trend 

Open 0.188  (0.157,  0.225) 0.182  (0.153,  0.217) 0.179  (0.149,  0.215) 

High 0.181  (0.152,  0.216) 0.179  (0.151,  0.211) 0.174  (0.146,  0.208) 

Low 0.176  (0.148,  0.210) 0.171 (0.144,  0.202) 0.168 (0.141,  0.200) 

Last 0.143  (0.116,  0.173) 0.140  (0.116,  0.169) 0.136  (0.111,  0.166) 

                                                           b)   3 minutes    

 No regressors An intercept A linear time trend 

Open 0.159  (0.124,  0.202) 0.157  (0.124,  0.197) 0.151  (0.116,  0.192) 

High 0.178  (0.143,  0.221) 0.176  (0.143,  0.216) 0.171  (0.136,  0.212) 

Low 0.165  (0.127,  0.212) 0.159 (0.124,  0.202) 0.156 (0.120,  0.200) 

Last 0.167  (0.131,  0.211) 0.168  (0.135,  0.210) 0.160  (0.124,  0.204) 

                                                           c)    5 minutes 

 No regressors An intercept A linear time trend 

Open 0.189  (0.140,  0.247) 0.176  (0.133,  0.231) 0.175  (0.131,  0.230) 

High 0.194  (0.144,  0.259) 0.190  (0.144,  0.249) 0.186  (0.138,  0.247) 

Low 0.216  (0.165,  0.281) 0.203 (0.157,  0.262) 0.202 (0.155,  0.261) 

Last 0.149  (0.106,  0.204) 0.150  (0.109,  0.202) 0.144  (0.102,  0.198) 
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Figure 8: Estimates of d for the HIGH series for different bandwidth parameters 
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Figure 9: Estimates of d for the LOW series for different bandwidth parameters 
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Figure 10: Estimates of d for the LAST series for different bandwidth parameters 
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